Control Flow Graphs as Malware Signatures
نویسندگان
چکیده
This study proposes a malware detection strategy based on control flow graphs. It carries out experiments to evaluates the false-positive ratios of the proposed methods. Moreover, it presents some insight to establish detection methods sound with respect to some obfuscation techniques.
منابع مشابه
Microsoft Word - Control Flow-based Malware Variant Detection - Final Version.docx
Static detection of malware variants plays an important role in system security and control flow has been shown as an effective characteristic that represents polymorphic malware. In our research, we propose a similarity search of malware to detect these variants using novel distance metrics. We describe a malware signature by the set of control flow graphs the malware contains. We first experi...
متن کاملDetecting Self-mutating Malware Using Control-Flow Graph Matching
Next generation malware will by be characterized by the intense use of polymorphic and metamorphic techniques aimed at circumventing the current malware detectors, based on pattern matching. In order to deal with this new kind of threat, novel techniques have to be devised for the realization of malware detectors. Recent papers started to address such an issue and this paper represents a furthe...
متن کاملDetecting Mobile Malware with TMSVM
With the rapid development of Android devices, mobile malware in Android becomes more prevalent. Therefore, it is rather important to develop an effective model for malware detection. Permissions, system calls, and control flow graphs have been proved to be important features in detection. In this paper, we utilize both static and dynamic strategies with a text classification method, TMSVM, to ...
متن کاملAnnotated Control Flow Graph for Metamorphic Malware Detection
Metamorphism is a technique that mutates the binary code using different obfuscations and never keeps the same sequence of opcodes in the memory. This stealth technique provides the capability to a malware for evading detection by simple signature-based (such as instruction sequences, byte sequences and string signatures) anti-malware programs. In this paper, we present a new scheme named Annot...
متن کاملParanoid Android: Android Malware Classification Using Supervised Learning on Call Graphs
Malware design and detection is an eternal arms race of increasing sophistication. A new front has been recently expanded in the discipline of malware obfuscation and self-modification, seeking to fool the signature-based approaches dominant in commercial anti-virus software. In response, security researchers have been seeking to design methods to classify executables based on their semantic fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007